Difference between revisions of "KPI"

From KIproBatt Wiki
Tag: 2017 source edit
Tag: 2017 source edit
Line 16: Line 16:
  
 
<math>Quality = \frac{\text{flawless products}}{\text{actual output}} \times 100</math>
 
<math>Quality = \frac{\text{flawless products}}{\text{actual output}} \times 100</math>
<br />
 
  
<p>'''Base value'''
+
 
 +
'''Base value'''
  
 
The base value for the laboratory battery production process is to be determined on the basis of the first battery batch produced (approx. 50 batteries).
 
The base value for the laboratory battery production process is to be determined on the basis of the first battery batch produced (approx. 50 batteries).
  
 
<math>Quality = \frac{\text{no. produced parts - (no. rework + no. scrap)}}{\text{no. produced parts}}</math>
 
<math>Quality = \frac{\text{no. produced parts - (no. rework + no. scrap)}}{\text{no. produced parts}}</math>
<br /><p/>
+
 
  
 
'''Current state'''
 
'''Current state'''
  
 
No improvement achieved yet, as laboratory battery production has not yet started.
 
No improvement achieved yet, as laboratory battery production has not yet started.
<br />
+
 
  
 
'''Target value'''
 
'''Target value'''
  
 
The quality parameter should be increased by approx. 5%.
 
The quality parameter should be increased by approx. 5%.
<br />
+
 
  
  

Revision as of 18:28, 14 November 2021

Cluster-KPIs


OEE-Potential

The KIproBatt project aims at increasing the Overall Equipment Effectiveness (OEE) by improving the quality factors:

  • Reduction of scrap parts
  • Reduction of reworking parts
  • Integration of real-time sensor data



Base value

The base value for the laboratory battery production process is to be determined on the basis of the first battery batch produced (approx. 50 batteries).


Current state

No improvement achieved yet, as laboratory battery production has not yet started.


Target value

The quality parameter should be increased by approx. 5%.


TCO-Potential

The KIproBatt project aims at decreasing the Total Cost of Operations (TCO) by improving the subsequent factors:

  • Reduction of energy consumption
  • Cost of operating materials (e.g., reduction in the use of operating materials, avoidance of waste)
  • Integration of real-time sensor data


Base value

The base value for the laboratory battery production process is to be determined on the basis of the first battery batch produced (approx. 50 batteries).

Current state

By using the reference process in the forming process, the energy consumption and the associated energy costs are already reduced compared to the original process. Energy consumption is thus reduced by approx. 2% (20% reduction in energy consumption in the forming process, 9.4% share of forming in total energy consumption).

Target value

The TCO should be decreased with respect to two factors:

  • Reduction of energy consumption by approx. 5%.
  • Reduction of costs of operating materials by approx. 5% (see 3^rd Project-KPI)


Project-KPIs

Material consumption per unit

Models can be used to estimate the amount of electrolyte required and to reduce it. In contrast to the active material, a greater potential for reduction is seen here, since the active material has a direct influence on the energy content of the cell. → Contributes to the reduction of production costs (not listed in OEE/TCO).


Base value

Electrolyte consumption of 4 ml per 870 mAh cell

Current state

No improvement achieved yet, as laboratory battery production has not yet started.

Target value

The material consumption per unit should be reduced to by approx. 12.5%. The target value for electrolyte consumption is 3.5 ml per 870 mAh cell.

Share of digital interfaces

The KIproBatt project aims at increasing the share of digital interfaces that are integrated in the production process. This share is measured by combining two factors:

  • Share of data points that are recorded for a single cell.
  • Share of data points that is assigned to a single cell without human intervention (automatically).


Base value

Electrolyte consumption of 4 ml per 870 mAh cell

Current state

No improvement achieved yet, as laboratory battery production has not yet started.

Target value

The material consumption per unit should be reduced to by approx. 12.5%. The target value for electrolyte consumption is 3.5 ml per 870 mAh cell.

Variable production costs

The variable production costs are composed of the energy, material, scrap and manufacturing costs.

Current variable production costs:

  • 100%

Target variable production costs:

  • 90%


Literature

Rao et al.: Enhancing Overall Equipment Effectiveness in Battery Industries through Total Productive Maintenance, International Journal of Engineering Research in Mechanical and Civil Engineering (2017)

Pettinger, K.-H.; Dong, W.: When Does the Operation of a Battery Become Environmentally Positive? Journal of The Electrochemical Society 164 (2017)